开头,卢瑟福研究无线电波,取得了一点成绩--他成功地把一个清脆的信号发送到了1公里之外,这在当时是一个相当可以的成就--但是,他放弃了,因为有一位资深同事劝他,无线电没有多大前途。总的来说,卢瑟福在卡文迪许实验室的事业不算兴旺。他在那里待了3年,觉得自己没有多大作为,便接受了蒙特利尔麦克·吉尔大学的一个职位,从此稳步走上了通向辉煌的漫长之路。到他获得诺贝尔奖的时候,他已经转到曼彻斯特大学。其实是在那里,他将取得最重要的成果,确定原子的结构和性质。
到20世纪初,大家已经知道,原子是由几个部分构成的--汤姆逊发现电子,就确立了这种见解--但是,大家 还 不知道的是:到底有多少个部分;它们是怎样合在一起的;它们呈什么形状。有的物理学家认为,原子可能是立方体的,因为立方体可以整齐地叠在一起,不会浪费任何空间。然而,更普遍的看法是,原子更像一块葡萄干面包,或者像一份葡萄干布丁:一个密度很大的固体,带有正电荷,上面布满了带负电荷的电子,就像葡萄干面包上的葡萄干。
1910年,卢瑟福(在他的学生汉斯·盖格的协助之下。盖格后来将发明冠有他名字的辐射探测仪)朝一块金箔发射电离的氦原子,或称α粒子。令卢瑟福吃惊的是,有的粒子竟会反弹回来。他说,他就像朝一张纸发射了一发38厘米的炮弹,结果炮弹反弹到了他的膝部。这是不该发生的事。经过冥思苦想以后,他觉得只有一种解释:那些反弹回来的粒子击中了原子当中又小又密的东西,而别的粒子则畅通无阻地穿了过去。卢瑟福意识到,原子内部主要是空无一物的空间,只有当中是密度很大的核。这是个很令人满意的发现。但马上产生了一个问题,根据传统物理学的全部定律,原子因此就不应该存在。
让我们稍停片刻,先来考虑一下现在我们所知道的原子结构。每个原子都由三种基本粒子组成:带正电荷的质子,带负电荷的电子,以及不带电荷的中子。质子和中子装在原子核里,而电子在外面绕着旋转。质子的数量决定一个原子的化学特性。有一个质子的原子是氢原子;有两个质子的原子是氦原子;有三个质子的原子是锂原子;如此往上增加。你每增加一个质子就得到一种新元素。(由于原子里的质子数量总是与同样数量的电子保持平衡,因此你有时候会发现有的书里以电子的数量来界定一种元素,结果完全一样。有人是这样向我解释的:质子决定一个原子的身份,电子决定一个原子的性情。)中子不影响原子的身份,但却增加了它的质量。一般来说,中子数量与质子数量大致相等,但也可以稍稍多一点或少一点。增加或减少一两个中子,你就得到了同位素。考古学里就是用同位素来确定年代的--比如,碳-14是由6个质子和8个中子组成的碳原子(因为二者之和是14)。
中子和质子占据了原子核。原子核很小--只有原子全部容量的千万亿分之一,但密度极大,它实际上构成了原子的全部物质。克罗珀说,要是把原子扩大到一座教堂那么大,原子核只有大约一只苍蝇那么大--但苍蝇要比教堂重几千倍。1910年卢瑟福在苦苦思索的,就是这种宽敞的空间--这种令人吃惊、料想不到的宽敞空间。
认为原子主要是空荡荡的空间,我们身边的实体只是一种幻觉,这个见解现在依然令人吃惊。要是两个物体在现实世界里碰在一起--我们常用台球来作为例子--它们其实并不互相撞击。"而是,"蒂姆西·费里斯解释说,"两个球的负电荷场互相排斥......要是不带电荷,它们很可能会像星系那样安然无事地互相穿堂而过。"你坐在椅子上,其实没有坐在上面,而是以1埃(一亿分之一厘米)的高度浮在上面,你的电子和它的电子不可调和地互相排斥,不可能达到更密切的程度。
差不多人人的脑海里都有一幅原子图,即一两个电子绕着原子核飞速转动,就像行星绕着太阳转动一样。这个形象是1904年由一位名叫长冈半太郎的日本物理学家创建的,完全是一种聪明的凭空想像。它是完全错的,但照样很有生命力。正如艾萨克·阿西莫夫喜欢指出的,它给了一代又一代的科幻作家灵感,创作了世界中的世界的故事,原子成了有人居住的太阳系,我们的太阳系成了一个大得多的体系里的一颗微粒。连欧洲核子研究中心也把长冈所提出的图像作为它网站的标记。物理学家很快就意识到,实际上,电子根本不像在轨道上运行的行星,更像是电扇旋转着的叶片,想要同时填满轨道上的每一空间。(但有个重要的不同之处,那就是,电扇叶片只是好像同时在每个地方,电子真的就同时在每个地方。)
不用说,在1910年,或在此后的许多年里,知道这类知识的人为数甚少。卢瑟福的发现马上产生了几个大问题。尤其是,围绕原子核转动的电子可能会坠毁。传统的电动力学理论认为,飞速转动的电子很快会把能量消耗殆尽--只是一刹那间--然后盘旋着飞进原子核,给二者都带来灾难性的后果。 还 有一个问题,带正电荷的质子怎么能一起待在原子核里面,而又不把自己及原子的其他部分炸得粉碎。显而易见,那个小天地里在发生的事,是不受适用于我们宏观世界的规律支配的。